米勒·阿特金森是一位美国计算机科学家,1977年获得图灵奖。他与罗伯特·卡彭特(Robert W. Carpenter)一起开发了 Unix 操作系统中的文件系统,被称为 UFS。此外,他还参与了 Plan 9 操作系统的开发,并提出了 Plan 9 文件系统(9P)和 Inferno 操作系统中的 Styx 文件协议。他的贡献使得操作系统和网络通信方面的技术得到了飞跃发展。
对汽车感兴趣或是打算买车的朋友应该都听过阿特金森循环或米勒循环这些名词,虽然听起来相当高大上,但听销售顾问讲完,总感觉云里雾里不知所云。最关键的是,听完一番介绍后,自己对这项技术的优势也并没有了解的特别充分。通过这篇文章,车叔带大家一起了解这几种循环,并说明它们各自的优缺点,方便大家在选购过程中做出理性判断,而不是被各种包装的话术迷惑。
奥托循环
奥托循环可以说是四冲程内燃机工作的基本循环,奥托循环的一个工作周期由吸气、压缩、膨胀做功和排气四个冲程组成,并且在奥托循环的每个冲程,活塞行程都保持一致,它也是定容加热的理想热力循环。
它同时也是主流内燃机的基本工作原理,虽然不同厂家在发动机的技术上有各自亮点,但它们也都是建立在奥托循环的基础之上。
奥托循环的优点是运转平顺,发动机结构相对简单,对配气机构不用做特殊 *** 就可以做到很高的升功率,而且在各转速下发动机都能提供较好的动力输出。但它同时也存在缺点,就是它的燃油效率比较差,已经不能满足当代社会的需求。
阿特金森循环
阿特金森循环应该是朋友们听的比较多的一种内燃机循环,特别是丰田车型上经常会提到这项技术。在搞清楚阿特金森循环之前,我们先了解一下压缩比和膨胀比,所谓压缩比即压缩行程中活塞运行至下止点的汽缸容积与活塞在上止点时汽缸容积的比值;而膨胀比指做功冲程结束时汽缸容积与做功冲程开始时汽缸容积的比值。在奥托循环中压缩比与膨胀比相同,这对提高燃油效率并不能起到积极作用,而在阿特金森循环中,膨胀比会大于压缩比,这意味着在压缩行程较短的情况下,却能够有更长的做功行程,做功行程更长相当于在压缩行程中取得了更多的能量。这就直接提升了燃油效率。
阿特金森循环最初由英国工程师詹姆斯·阿特金森发明,在该循环发明之初,阿特金森本人设计了一套超复杂的连杆机构,使得活塞的做功行程大于活塞的压缩行程。虽然他的想法以及设计非常天才,但这种复杂的连杆机构并不利于发动机高速运转,而且后期维护非常麻烦。
不过总有一些喜欢秀技术的品牌热衷于实现这种复杂机构,毕竟难度更大的转子发动机都能量产更何况相对简单地往复式发动机。经过本田的一再努力,最终本田EXLink系列发动机被造了出来,但遗憾的是,这台发动机的最高转速只能维持在2000转附近,该发动机无法通过提高转速来压榨更多动力,所以该发动机并不具备实用性,最终本田不得不放弃这种最忠于阿特金森原型的阿特金森发动机。
而此后的发动机都是通过推迟关闭进气门来实现阿特金森循环,在阿特金森循环里,当发动机开始压缩行程后,进气门并不会立即关闭,而是会在压缩行程持续一小段时间后再关闭,此时会将部分混合气从进气管吐出汽缸。真正的压缩行程会从进气门关闭开始算起,所以做功行程自然会比压缩行程更长一些。这样一来也大幅提高了阿特金森循环的燃烧效率。
但阿特金森循环也存在一些缺点,就是低扭偏弱。在压缩行程,将本就稀薄的混合气还吐出去一部分,这就使得燃烧变得更加困难,所以阿特金森循环更适用于发动机低负载的中高速工况。
米勒循环
米勒循环的原理与阿特金森循环保持一致,都是让发动机的膨胀比大于压缩比从而榨取更多动力,但在实现方式上却略有不同。米勒循环在进气过程中,通过提前关闭进气门让实际进入汽缸的混合气小于理论值,从而起到降低发动机实际压缩比的作用,这样一来得到的膨胀比也会大于压缩比,所以燃烧效率也会得到相应提升。而且米勒循环因为提前关闭进气门的缘故,可以适当地对汽缸内的油气混合物起到降温作用,所以米勒循环还能有效改善内燃机爆震现象。
但米勒循环同样存在缺点,因为进入汽缸的混合气并没有形成非常强烈的湍流,所以它会出现与阿特金森循环相同的问题,就是高负载情况下功率不足。
不过现阶段日系品牌对米勒循环和阿特金森循环实现的方式基本一致,都是通过推迟关闭进气门实现降低压缩比,只是马自达对米勒循环进行了注册,所以为了规避专利,其他品牌都会将自己的循环称为阿特金森循环。而最忠于米勒循环原型的则是大众品牌的发动机,它们往往通过提前关闭进气门以降低发动机实际压缩比从而提高发动机燃烧效率。
不过在买车过程中,各位朋友大可不必担心各种循环的缺点,因为各大品牌都会通过复杂的配气机构让发动机在阿特金森/米勒循环和奥托循环之间切换,从而弥补各循环的弱项让车辆始终处于动力充沛且高效的状态。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
阿特金身循环是个很古老的技术,如果它全方位的好,早就取代奥托循环了;丰田或者其它主机厂所搞的阿特金森循环的确做到了膨胀行程大于压缩行程,但并没有改变几何的膨胀行程、压缩行程,只是通过更加成熟、完善的可变气门技术模拟出了阿特金森循环的效果,但活塞的几何膨胀行程依然等于压缩行程,只是利用进气门延迟关闭(压缩冲程进行了一部分之后,进气门才会关闭),将可用空气利用晚关的进气门压出一部分,之后进气门关闭、已经上行一部分行程的活塞才真正意义上进入压缩冲程,简单点说纯正的阿特金森循环的物理膨胀行程的确大于物理压缩行程,但由于结构太过于复杂、易出故障而被雪藏;而现如今的所谓阿特金森循环只是通过可变气门技术将实际的压缩行程缩小(物理压缩行程不变),而模拟出了压缩行程小于膨胀行程的效果,而省油的原理在于同样的压缩行程下、谁的膨胀行程更大,那么谁就可以做更多的功,别问鄙人为什么,工程热力学上就是这么写的,所以阿特金森循环下烧更少的油、可以换来更多的功没问题,但“功”的质量就与奥托存在明显的不同了。。。
传统奥托循环发动机有进气、压缩、做功、排气四个冲程,而阿特金森循环可以有进气、晚关进气门的压缩排气、压缩、做功、排气五个冲程(比喻),因为当活塞上行开始压缩气体的时候,进气门还没有关闭,所以一部分气体被顺着打开的进气门压出,所以这个过程并不属于真正意义的压缩冲程,而当活塞上行了一段行程后,进气门彻底关闭,此时才算真正意义上进入压缩冲程,由于活塞上行已经走了一段路程,所以真正压缩冲程距离变短,所以这样就缩短了压缩冲程,同时由于压缩行程的变短,导致等效压缩比也同时降低(正如下图所示,实际压缩行程变短,导致缸内最大容积变小,所以最大缸内容积与燃烧室容积的比值同时变小,所以压缩比变小)。。。
阿特金森循环是存在缺点的,而这个缺点非常的致命!还是那句话,如果阿特金森循环既省油、又能保证动力,那么它早就取代奥托循环而成为内燃机首选循环方式了,之所以不能单独存在就是因为其功率密度太低,单独使用就等同于降排量一样,而且阿特金森循环还没有办法配合增压技术,道理也很简单怎么增压也扛不住阿特金森的晚关进气门往出吐啊,可用空气都给吐出去了,还增什么压?而动力弱也同样是由于其在真正进入压缩冲程之前,将可用空气吐出了一部分,空气少了、燃烧还能保证么?
发动机产生更强动力的本质是什么?说到底就是在每一个循环、烧掉更多的燃油、单位时间内获得更大的能量而已;比如一台2.0L自然吸气发动机,每个气缸0.5L,按照理想的空燃比14.7来计算,每个循环可以烧掉约0.034L的燃油,如果想增强动力,要么增加排量、要么上增增压(不改变物理容积,而强行向气缸内压入空气),这两种方式都可以让每个循环的进气量增加、从而烧掉更多的油、获得更大的动力。。。
我们再来看看发动机在阿特金森循环状态下都做了些什么;还是用上文中2.0L自然吸气发动机为例(阿循环配不了增压,前文已经有提到过),每个气缸0.5L,也就是说每个气缸可以吸入最大为0.5L的空气,结果由于进入假压缩冲程时(上文提到的第五循环),吸入的0.5L空气被压出去一部分(进气门没关),假设压出去0.2L(实际没有这么多),这个时候缸内的可用空气变成了0.3L,如果还是按照理想空燃比14.7来计算,此时能喷出的燃油只能达到0.020L,可以烧的混合气体变少了,每循环产生的动力自然就低了,发动机的功率、扭矩自然都上不去了(不要去较真功率或扭矩,无论功率还是扭矩,都是靠烧更多的油获得的,每循环可用混合气量降低,功率、扭矩自然都会降低);如果上文例子中的2.0L全时阿特金森循环化发动机,它的实际排量相当于奥托循环的1.2L(当然这只是个例子,但实际上2.0L纯阿特金森发动机的动力至少赶不上1.6L的奥托循环发动机),这样我们就有了一个比较准确的答案,我们花2.0L发动机的价格,买回了一个只有1.2L排量动力的发动机,换做是您能同意么?愿意买么?
所以单独存在的阿特金森循环化发动机是不存在的,换句话说是没有存在价值的,奥托循环发动机的排量是实打实的,说2.0L的排量就是2.0L的排量;而2.0L的阿特金森循环化发动机最多也就是1.4-1.6L排量的实际水平,这样的产品谁会买?涡轮增压技术之所以能得到广泛推广在于其以小博大,而阿特金森循环则完全是大不如小,所以丰田也好、其它主机厂也罢都不会令其单独存在,单独存在就完全是个废品,所以阿特金森循环是会用在燃油车上,但不会单独存在,而是和奥托组成了双循环的方式,通过成熟的VVT技术,让发动机在部分工况下,实现阿特金森化,比如车子在匀速行驶的时候,对功率、扭矩都无过大需求,这个时候就可以切阿特金森循环,而车子需要给油加速的时候,立刻切回奥托循环。。。传统的阿特金身循环发动机有两大缺点,其一就是结构复杂(如上图)、其二就是动力变现太疲软;不过以现有技术倒是扫清了障碍,比如通过更加成熟的VVT(可变气门正时)缩短了压缩行程,从而在不改变发动机常规结构的情况下模拟出了阿特金森循环;又通过配合电机组成混动、配合奥托组成双循环的方式来弥补动力不足的问题,加速工况用电机、或者是奥托循环,而阿特金森则用于匀速的工况,这样一来阿特金森的短处就被弥补,而可以发挥省油的长处了;所以说阿特金森循环已经被丰田用在了燃油车上,只不过不是单独存在,而是与奥托组成了双循环,实际上单阿特金森循环循环的发动机没有存在意义。。
什么是阿特金森循环?
众所周知,发动机是一个把燃油化学能转换为机械能的装置,中间还会有一个热能的转换,其工作原理简单来说就是要经过:吸气-压缩-做功-排气这四个步骤,从发动机的发明到现在,大多数都是采用一开始的奥托循环。
所谓奥托循环就是四个步骤的活动行程相同,结构上相对而言是最简单的,随着对发动机的深入研究,人们发展如果压缩行程(压缩比)小于做功行程(膨胀比),那么就会起到省油的作用,于是在1882年一位英国的工程师詹姆士·阿特金森发明了新的循环,那就是阿特金斯循环,来了解一下具体的工作原理。
阿特金森循环是在奥托循环的基础上进行了改进,吸气-压缩-做功-排气四个过程大体不变,通过一套复杂的曲轴、连杆结构实现了做功行程大于压缩行程,这样一来吸入和压缩的空气变少,排量不变的情况下更少的燃油就可以达到最佳空燃比,而做功行程相对更长,简单点来说就是消耗更少的燃油干了更多的活,从而达到了省油的目的,热效率也随之提高,像之前普通发动机热效率一般在30%左右,通过可变气门正时、缸内直喷、分层燃烧等技术可以提高到32-34%,而阿特金森循环则能达到38%,现像在丰田最高的41%同样也是在阿特金森循环技术上进一步升级的结果。
其实现在的阿特金森循环并非真正的阿特金森
由于阿特金森循环发动机在结构上相对比较复杂,无论是对技术要求还是生产成本、后期维修费用等都非常高,而且复杂了以后能在一定程度上降低可靠性,所以真正的阿特金森循环发动机并没有得到青睐,并且被逐步的放弃了。
在1940年一位美国的工程师罗尔夫·米勒取得了名为米勒循环的发明专利(后来被马自达买下),这代表着对现在发动机非常重要的米勒循环正式出现了,只是在早期并没有被真正利用起来,直到1990年马自达才应用到其大型房车上,这才算是进入了广大消费者的视野。
什么是米勒循环?
如果说阿特金森是奥托循环的升级改进,那米勒循环就是对阿特金森循环的进一步简化,两者都是以奥托循环为基础,通过压缩行程小于做功行程来降低油耗,只是在结构和工作原理上有所不同。
米勒循环过程中,活塞由下而上的行程与做功行程相同,就活塞而言还是一个完整的奥托循环,但是采用延迟关闭进气门的方式来实现了减小压缩行程的目的,因为进气门关闭的晚了,吸入的空气会有一部分被排出,所以实际压缩的空气量还是少的,因此在本质上和阿特金森循环没有什么太大区别,但是胜在结构简单,也就没有因为复杂而带来的缺点了,这才是现在所谓的“阿特金森循环发动机”真正采用的循环方式,因为之前马自达掌握专利的原因,只是在叫法上有所区别,虽然2008年专利已经解除但已经习惯了这种叫法,所以就一直保持到了现在。
阿特金森(米勒)循环真的好吗?
比起奥托循环虽然在油耗上更省了、米勒循环也解决了结构复杂的问题,但是这种发动机本身也有着明显的缺点,那就是动力不足,毕竟其本质还是用了更少的燃油来做更多的功,而且高膨胀比不利于发动机的高转速输出,最常见的形容词就是“低扭不足”,其实高转速动力表现也不怎么样,只是没有低速时那么明显,虽然对于一辆车而言油耗的经济性很重要,但动力同样也是不能忽略的因素,对车企而言有动力再降油耗难度还低一些,毕竟不是谁都像马自达对技术的执着那样,因此综合对比下来普通的奥托循环相对更全面,成为了现在的主流,所以丰田或其他品牌的燃油车不采用就很好理解了。
为什么丰田混动用阿特金森循环发动机?
其实看完上面的介绍这个问题的答案已经很明确了,因为更加经济省油,低扭不足的缺点可以通过电机来弥补,况且低速主要就是通过电机来驱动,速度快了以后用发动机驱动还有着油耗上的优势,因此阿特金森循环发动机对于丰田的混动来说是一个很好的选择。
总结:阿特金森(米勒)循环虽然看起来更先进,但有着省油优势的同时也有着动力上的不足,属于优缺点都比较明显的类型,因此并不能直接用“好”来形容,只能是很好的满足某些特定需求,比如非插电式混动车型,对于普通燃油车型来说并不太合适。
用了,而且大规模使用,雷凌、卡罗拉1.2T双循环+涡轮增压,现在一般家用车型内燃机上的最先进的技术都可以在丰田量产车上看得到。
那些说丰田保守的我真不知道是真懂还是不懂装懂,丰田在变速箱和动力系统上从来没保守过,都是最先进的技术,只是你们钱不够没买到而已